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a 1. a.    S = { –7 ; –3 }  b. S = { –8 ; ‒2 ; 2 ; 5 }  c. S =  

 

 

 

 

 

 

 

 

 

  d.    –6 < s2 < –5  

 

 

 

 

 

 

 

 

 

 
 2. a.    S = { 0 ; 5 ; 8 } b. S = { –5 }  c. S = { –2 } d. S = { –3 } 

 

 

 

 

 

 

 

 

 

 
 3. a.    S = { ‒5 } b. S = { –2 ; 1 } c. S = { –4 ; 2 ; 5 } 
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2 est déjà sur le 1er 
point de la courbe… 
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Les points de la 
courbe sont déjà sur 
l'axe des abscisses… 

On ne coupe jamais 
la courbe. 
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4. Pour l'équation  (x) = 1 , on a  S =  . 

 Ou en français : 
 Les solutions sont les entiers relatifs. 

 

 

 

 

 

 

 

 

 

 Pour l'équation  (x) = 1 , les solutions sont les entiers pairs. 

 On peut dire aussi : 
 Les solutions sont tous les nombres de la forme  2k  avec  k   . 

 
 

 

 

 

 

 

 
 
 

 
 

 

 
b 1.  On ne peut pas conjecturer les deux solutions de l'équation  (E1) . 

   Tout ce qu'on peut dire, c'est qu'elles sont opposées et pas loin de –1,5 et 1,5. Mais c'est trop imprécis... 

   On conjecture que  S2 = { –1 } . 

   Attention à ne pas oublier le verbe « conjecturer » même si on est sûr de soi... 

   On conjecture que  S3 = { –1 ; 1 } . 

   On conjecture que  S4 = { –2 ; 2 } . 

   On conjecture que  S5 = { 1 } . 

   On conjecture que  S6 = { 0 } . 

   On ne peut pas conjecturer  S7 . 

   On dirait que les courbes  Cf  et  Cg  se superposent pendant un moment... Restons prudent ! 

   On ne peut pas conjecturer  S8 . 

   Tout ce qu'on peut dire, c'est qu'il n'y a qu'une solution et qu'elle est entre 0 et 1. Un peu plus proche de 1. 

   On conjecture que  S9 = { –2 ; 0 } . 

 2.  f (x) = 1 

     x 2 – 1 = 1 

     x 2 = 1 + 1 

     x 2 = 2 

     x = 2   ou  x = – 2  

   Donc :  S1 = { – 2  ; 2  } .  → On ne pouvait en effet pas le conjecturer... 

   h(x) = 1 

     –2x – 1 = 1 

     –2x = 2 

     x = 
2

–2
 

     x = –1 

   Donc :  S2 = { –1 }  → Conjecture vérifiée. 

   f (x) = 0 

     x 2 – 1 = 0 

     x 2 = 1 

     x = 1   ou  x = – 1  

     x = 1  ou  x = –1 

   Donc :  S3 = { –1 ; 1 } .  → Conjecture vérifiée. 

 

 

C 

 C 

On reconnaît tous 
les entiers relatifs. 

 

C 

 C 

On reconnaît tous 
les entiers pairs. 
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   f (x) = 3 

     x 2 – 1 = 3 

     x 2 = 4 

     x = 4   ou  x = – 4  

     x = 2  ou  x = –2 

   Donc :  S4 = { –2 ; 2 } .  → Conjecture vérifiée. 

   g(x) = –1 

     4x – 5 = –1 

     4x = 4 

     x = 
4

4
 

     x = 1 

   Donc :  S5 = { 1 } .  → Conjecture vérifiée. 

 

   f (x) = –1 

     x 2 – 1 = –1 

     x 2 = 0 

     x = 0 

   Donc :  S6 = { 0 } .  → Conjecture vérifiée. 

   f (x) = g(x) 

     x 2 – 1 = 4x – 5 

     x 2 – 4x – 1 + 5 = 0 

     x 2 – 4x + 4 = 0 

     ( x – 2 ) 2 = 0 

     x – 2 = 0 

     x = 2 

   Donc :  S7 = { 2 } .   

   Nous étions restés prudent, mais le graphique est cohérent avec cette valeur 2. 
   Il se passe un phénomène spécial : la droite  Cg  vient toucher la parabole  Cf  en un seul point, sans la traverser. 
   On dira plus tard que la droite  Cg  est tangente à la parabole  Cf . 

   g(x) = h(x) 

     4x – 5 = –2x – 1 

     4x + 2x = –1 + 5 

     6x = 4 

     x = 
4

6
 

     x = 
2

3
 

   Donc :  S8 = { 
2

3
 } .  → Graphique est cohérent avec cette valeur 2

3
 . 

   f (x) = h(x) . 

     x 2 – 1 = –2x – 1 

     x 2 + 2x – 1 + 1 = 0 

     x 2 + 2x = 0 

     x ( x + 2 ) = 0 

     x = 0  ou  x + 2 = 0 

     x = 0  ou  x = –2 

   Donc :  S9 = { –2 ; 0 } .  → Conjecture vérifiée. 

 

 
c 1.  L'équation  F(x) = 1  est équivalente à  0,2 x 3 – 0,5 x 2 – 0,45 x + 2,125 = 1  qu'on ne sait pas résoudre en Seconde. 

   C'est une équation du 3e degré ! 
   On choisit donc la résolution graphique. 

   Mais on reste prudent car les valeurs ne sont pas entières... 
  Et on conjecture que  S = { –1,5 ; 1,5 ; 2,5 } . 

 2.  F(–1,5)  =  0,2×(–1,5) 3 – 0,5×(–1,5) 2 – 0,45×(–1,5) + 2,125  

    =  0,2×(–3,375) – 0,5×2,25 + 0,675 + 2,125  

    =  –0,675 – 1,125 + 0,675 + 2,125  

    =  1 

   F(1,5)  =  0,2×1,5 3 – 0,5×1,5 2 – 0,45×1,5 + 2,125  

    =  0,2×3,375 – 0,5×2,25 – 0,675 + 2,125  

    =  0,675 – 1,125 – 0,675 + 2,125  

    =  1 
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   F(2,5)  =  0,2×2,5 3 – 0,5×2,5 2 – 0,45×2,5 + 2,125  

    =  0,2×15,625 – 0,5×6,25 + 1,125 + 2,125  

    =  3,125 – 3,125 + 1,125 + 2,125  

    =  1 

   On a donc vérifié que  S = { –1,5 ; 1,5 ; 2,5 } .  → Cette fois-ci, ce n'est plus une conjecture. 

   Avec la convention passée, le graphique nous assure qu'il n'y a pas d'autre solution. 
 

 

 
d  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 On rédige en regroupant en cinq catégories dans l'ordre croissant du nombre de solutions : 

 Si  m  ] ‒ ; ‒3 [ , alors l'équation n'a pas de solution. 

 Si  m = –3 , alors l'équation a une solution. 

 Si  m  ] ‒3 ; 0 [  ] 4 ; + [ , alors l'équation a deux solutions. 

 Si  m { 0 ; 4 } , alors l'équation a trois solutions. 

 Si  m  ] 0 ; 4 [ , alors l'équation a quatre solutions. 
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 Si  k = 0 , alors l'équation n'a pas de solution. 

 Si  k  ] ‒ 1 ; 0 [  ] 0 ; + [ , alors l'équation a une solution. 

 Si  k = ‒1 , alors l'équation a deux solutions. 

 Si  k  ] ‒ ; ‒1 [ , alors l'équation a trois solutions.    
 

 
 

 

Si  m = 4 ,  

alors l'équation a trois solutions. 

Si  m  ] 4 ; + [ ,  

alors l'équation a deux solutions. 

Si  m = 0 ,  

alors l'équation a trois solutions. 

Si  m  ] 0 ; 4 [ , 

alors l'équation a quatre solutions. 

Si  m = –3 , 

alors l'équation a une solution. 

Si  m  ] ‒3 ; 0 [ , 
alors l'équation a deux solutions. 

Si  m  ] ‒ ; ‒3 [ , 
alors l'équation n'a pas de solution. 

 

CH 

Si  m  ] 0 ; + [ ,  

alors l'équation a une solution. 

Si  m  ] ‒ ; –1 [ , 

alors l'équation a trois solutions. 
 

Si  m = 0 , 

alors l'équation n'a pas de solution. 

Si  m = –1 , 

alors l'équation a deux solutions. 
 

Si  m  ] –1 ; 0 [ , 

alors l'équation a une solution. 


